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Abstract Empirical assessments of the influence of

invasive species on native species are infrequent

because the required long-term data are rarely avail-

able. The invasion of silver carp in the Upper

Mississippi River System (UMRS) provides a unique

opportunity to assess the influence of this invasive

species on native fishes because a highly standardized,

long-term monitoring program has been sampling the

fish communities in six reaches of the UMRS for over

20 years. We analyzed fish abundance (catch per unit

effort from electrofishing) and water-quality data

collected from 1994 to 2013 from three reaches where

silver carp populations have been established since

2000, and three reaches where they are not established.

Our results provide empirical evidence of a negative

effect of invasive silver carp on native sport fish in the

UMRS. Although water temperature, suspended solid

concentration, and flooding also differed substantially

between control and invaded reaches, only silver carp

abundance had a direct negative relationship with the

abundance of adult sport fish. Our analyses suggest

that the mechanism for this decline may be competi-

tion for zooplankton between silver carp and larval/

juvenile sport fish. In reaches where silver carp is

established, recruitment of juvenile sport fish appears

to be constrained relative to reaches where silver carp

is not established.

Keywords Invasive species � Sport fish � Long-term
ecological data � Empirical relationship � Biotic
constraints

Introduction

Although invasive species are an increasing global

threat to ecosystems and the subject of much scientific

inquiry, actual empirical assessments of the effects of

invasive species on native species are relatively scarce

because of the rarity of the long-term data needed to

examine these effects while accounting for other

drivers and anthropogenic stressors (Capinha et al.

2015; Clavero and Garcia-Berthou 2005; Grarock
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et al. 2014; Trexler et al. 2000). Rigorous approaches

to detecting the effects of invasive species on native

species require standardized data collection on the

abundance of native biota before and after the

establishment of the invasive species, in multiple

invaded areas and multiple control areas where the

invasive species is not established (Blossey 1999;

Underwood 1992, 1994). Such data are uncommon,

but the invasion of silver carp (Hypophthalmichthys

molitrix) in the Upper Mississippi River System

(UMRS; Upper Mississippi River and its navigable

tributaries) provides a unique opportunity to empiri-

cally examine the effects of this invasive species on

native species. The Long Term Resource Monitoring

(LTRM) element of the US Army Corps of Engineers

(USACE) Upper Mississippi River Restoration Pro-

gram has been monitoring fish communities and water

quality in six reaches of the UMRS for over 20 years

including several years before silver carp became

established in the system (Irons et al. 2011; Ratcliff

et al. 2014).

Silver carp is one of four species of Asian carps that

have established reproducing populations in the

UMRS (Chick and Pegg 2001; Raibley et al. 1995;

Williamson and Garvey 2005). Of the four Asian carps

established in the UMRS, the possibility of silver carp

and bighead carp (Hypophthalmichthys nobilis), here-

after referred to as bigheaded carps, invading the Great

Lakes via the Chicago Area Waterway System is a

major concern for managers, scientists, and the public

(Cudmore et al. 2012; Jerde et al. 2011, 2013; Kolar

and Lodge 2002). Assessing the effects of silver carp

on the UMRS ecosystem is critical for advancing our

understanding of ecological interactions between

invasive species and the ecosystems they invade.

Silver carp is an omnivorous planktivore that con-

sumes phytoplankton, zooplankton, and detritus (Xu

and Xie 2004; Zhou et al. 2009, 2011). There is

evidence that silver carp can alter zooplankton com-

munities in the UMRS (Sass et al. 2014) and consume

similar zooplankton species as native planktivorous

fishes (Sampson et al. 2009), potentially leading to

negative effects on native fishes through competition

(Irons et al. 2007, 2011; Pendleton et al. 2017). The

potential negative effects of silver carp are not limited

to native planktivorous fishes because nearly all fish

species in freshwater ecosystems begin their lives

feeding on zooplankton (Chick and Van Den Avyle

1999). Research to date suggests bigheaded carps may

be having negative effects on native fishes, particu-

larly in the Illinois River (Irons et al. 2007, 2011;

Solomon et al. 2016), but the assessments made to date

have not compared trends among river reaches

invaded by bigheaded carps with reaches where these

species have yet to become established. Data from the

LTRM element are ideally suited for such an evalu-

ation because this ongoing standardized monitoring

program precedes the establishment of silver carp in

the UMRS. Furthermore, this monitoring occurs in

three reaches that have been invaded by silver carp and

three reaches where silver carp is not yet established.

In this study, we tested for an empirical relationship

between abundance of silver carp and sport fish in the

six LTRM study reaches as a natural experiment

similar to a before–after–control–impact (BACI)

analysis (Underwood 1992, 1994). The initial con-

ception of BACI models relies on a single impact site,

a single control site, and multiple temporal samples

taken before and after the impact of the stressor at both

the control and impacted sites. Analysis of variance is

used to test for differences in a response variable in

control and impacted sites, before and after the effects

of the stressor. The critical test result is the signifi-

cance of the interaction between time and treatment

(control vs impact) in this model. Among other

limitations of this approach (Underwood

1992, 1994), the analysis treats the environmental

stressor as a categorical variable that either occurs as

single point in time event or that begins and continues

unchanged from that point on. In contrast, environ-

mental stressors such as invasive species can have

effects that vary through time as the abundance and

population demographics of the invasive species

change. Given the exponential population growth

silver carp have exhibited in the UMRS since their

introduction (Pendleton et al. 2017), we felt it was

critical to analyze their effects as a continuous variable

rather than the categorical approach of BACI or

Beyond BACI designs. Numerous environmental

factors are also subject to anthropogenic changes and

can potentially influence the interactions between

native biota and invasive species in several ways

(Byers 2002; Didham et al. 2007). A continuous data

analysis allows the relationship between silver carp

and sport fish to be assessed with the addition of

environmental covariates that have the potential to

influence the abundance of sport fish differentially

between control and invaded reaches.
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The objectives of this study are to assess the

relationships between silver carp with adult and

juvenile sport fish in the Upper Mississippi River.

We used 20 years (1994–2013) of electrofishing and

water-quality data from the LTRM element of the

USACEUpper Mississippi River Restoration Program

(Ratcliff et al. 2014; Soballe and Fischer 2004) to

assess relationships between silver carp and native

sport fish. Three environmental variables, flooding,

water temperature, and suspended solid concentration,

were included as covariates in our analysis because

these factors vary longitudinally in the UMRS and

may influence sport fish populations.

Methods

Study system

The LTRM monitoring program samples six study

reaches across more than 2000 river km of the UMRS:

Mississippi River Pools 4, 8, 13, 26, and an Open

River Reach, and the La Grange Reach of the Illinois

River (Fig. 1). These reaches include a diversity of

aquatic habitats, including the main channel, side

channels, backwater lakes, and impounded areas.

They vary in length from 52 to 130 km and in total

aquatic area (i.e., all contiguous habitats) from 7241 to

11,400 km2 (Table S1). Silver carp is not yet estab-

lished in the upper three reaches (Pools 4, 8, and 13,

hereafter control reaches) but is established in the

lower three reaches (Pool 26, Open River Reach, and

La Grange Reach, hereafter referred to as invaded

reaches) since 2000 (Fig. 2).

Statistical analyses

We chose to focus on the effects of silver carp because

they are far more abundant in the UMRS than bighead

carp and are much better represented in our LTRM

data. Sport fish were selected for these analyses

because management efforts for these species are

relatively consistent among the six LTRM reaches

because state and federal agencies are generally

focused on maintaining or increasing their abundance

throughout the UMRS. Additionally, collection meth-

ods and survey designs usually sample sport fish as

well as, or better than, other species. To analyze trends

of sport fish, we used the combined catch per unit

effort (CPUE) from electrofishing of 19 fish species

native to the Upper Mississippi River System pursued

by anglers and considered to be a sport fish in at least

one Upper Mississippi River state (Table S2). The fish

component of the LTRM uses a stratified random

design to sample fishes in several major habitat strata,

including the main channel, side channels, contiguous

backwater lakes, and impounded areas (Ratcliff et al.

2014). This design allows for the calculation of a pool-

wide mean CPUE as an index of abundance, weighting

data from each habitat strata by the total area of that

habitat in each river reach. Electrofishing is conducted

Fig. 1 The six reaches of the Upper Mississippi River System

sampled by the LTRM. Silver carp is not yet established in three

upper pools (Pool 4, Pool 8, Pool 13; control reaches—shaded

blue) of the Mississippi River, but have been established in Pool

26 and the Open River Reach of theMississippi River and the La

Grange Reach of the Illinois River (invaded reaches—shaded

red) since 2000
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using pulsed-DC electrofishing boats with each sam-

ple consisting of a 15-min electrofishing transect (see

Ratcliff et al. 2014 for complete sampling protocols).

We considered adult sport fish to be those individuals

with total lengths greater than or equal to stock size for

each species, a designation used by fish biologists that

approximates biological maturity (Table S2, Anderson

and Neumann 1996). All LTRM fish data are publicly

available online (http://www.umesc.usgs.gov/data_

library/fisheries/fish1_query.shtml). This repository

not only includes a user-friendly interface for data

downloads, but also has tools for graphically exploring

LTRM data online.

Our data included 6 years prior to the establishment

of silver carp and 14 years post-establishment

(Fig. 2), allowing this invasion to be analyzed as a

natural experiment. We used a repeated-measures

mixed model to test whether trends in the CPUE of

adult sport fish in the three invaded reaches differed

from those in the three control reaches and whether

any differences were associated with silver carp

CPUE. As is the case with most BACI designs, control

reaches are not perfect controls. Several environmen-

tal variables are known to vary among the LTRM

study reaches (Johnson and Hagerty 2008). Therefore,

we included data for the number of days the river was

in flood stage, water temperature during the growing

season (April–October), and total suspended solids as

covariates in the model. All three of these covariates

can influence the abundance of adult and juvenile sport

fish independently from silver carp. When indepen-

dent variables were significant, we assessed the effect

size using Cohen’s f2 (Selya et al. 2012).

Data for water temperature and suspended sedi-

ments are from publicly available LTRM water-

quality component (Soballe and Fischer 2004;

https://www.umesc.usgs.gov/data_library/water_

quality/water_quality_page.html), whereas data on

river stage (gage height) were taken from gages

maintained by either the USACE or the US Geological

Survey (USGS, Table S3). The frequency and duration

of flooding is a critical environmental variable

affecting all aspects of river-floodplain ecosystems

(Junk et al. 1989; Sparks 1995). We quantified the

number of days the river met or exceeded the specified

flood stage each year (flood days) as an index of

flooding. All river stage data are available online for

both the USACE (https://www.rivergages.com) and

USGS (http://waterdata.usgs.gov/nwis/sw) gages.

Water temperature is a critical factor for fishes

known to affect the growth and survival of larvae and

juveniles (Houde 1987; Wuellner et al. 2008). We

used data from LTRMwater-quality fixed sites located

in the main channel of the Mississippi and Illinois

rivers to quantify water temperature (Table S4).

Because the frequency of sample collection changed

over the 20-year period we were analyzing (http://

www.umesc.usgs.gov/reports_publications/ltrmp/

water/fixed/fs_methods.html), we analyzed annual

mean temperature for each LTRM reach based on

monthly averages from April through October so that

differences in the number of observations per month

would be less likely to influence the overall tempera-

ture trends among years. Monthly data from Novem-

ber–March were not included in these analyses

because river access during winter can be challenging,

causing sample collection to be less consistent from

year to year in these months. Additionally, April–

October corresponds roughly with the growing season

for most fishes.

The concentration of suspended solids directly

influences water turbidity and is greatly influenced by

sediment loading associated with agriculture and other

anthropogenic ecosystem alterations (Houser et al.

2010; Houser 2016). We calculated annual mean

suspended sediment concentrations (mg L-1) from

LTRM stratified water-quality sampling during the

summer. These data were collected from multiple

random sites in the main channel, side channels,
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Fig. 2 Catch per unit effort (log10 catch * 15-1 min elec-

trofishing) of silver carp in the three invaded reaches [Pool 26

(red inverted triangle), Open River (red circle), La Grange (red

diamond)] from 1994 to 2013
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backwater lakes, and impounded habitat strata at each

LTRM river reach during the last week of July and the

first week of August each year. Suspended sediment

data were log transformed prior to analysis to reduce

heteroscedasticity and linearize the trends. Soballe and

Fischer (2004) provided further details on LTRM

fixed-site and stratified random water-quality methods

and sampling design.

Because silver carp is not piscivorous, their effects

on adult sport fish would likely be indirect, resulting

from competition for zooplankton between silver carp

and both forage fish, and juvenile sport fish. Therefore,

we conducted additional repeated-measures analyses

for a multi-species index of forage fish and the juvenile

sport fish. Our forage fish index was the combined

CPUE of emerald shiner (Notropis atherinoides) (all

sizes) and all native fishes B 80 mm total length, a

modification of the forage fish indicator used in

Johnson and Hagerty (2008). Three species comprised

the majority of forage fish in the six reaches: gizzard

shad (Dorosoma cepedianum), emerald shiners, and

bluegill (Lepomis macrochirus) (Table S5). Our multi-

species index of juvenile sport fish was the combined

abundance of 19 sport fish\ the species stock size

(Table S2, Anderson and Neumann 1996). Identifica-

tion of adult and juvenile silver carp was made in the

field for the vast majority of individuals, although

smaller juveniles were occasionally brought back to

the laboratory for identification. Because silver and

bighead carp hybridize in the UMRS (Lamer et al.

2010), it is possible that some of the individuals

identified as silver carp were silver carp 9 bighead

carp hybrids or backcrosses.

Two important considerations for our repeated-

measures mixed model are the possibility that auto-

correlation may violate the assumption of independent

variables and whether the Y-intercept should be fixed

across subjects (river reaches) or random. We

explored the variance structure of our data for signs

of autocorrelation by calculating the mean correlation

(averaged across the six river reaches) of adult sport

fish abundance among time steps from 1 to 19 years

apart (Table S6). Although the correlation between

time steps decreased as time step increased, indicating

autocorrelation was present, the mean correlation

decreased only slightly with time step relative to the

standard autoregressive AR(1) model (Table S6).

Additionally, we felt a single fixed Y-intercept across

the six river reaches was an unrealistic assumption

given the size and complexity of the UMRS. There-

fore, we modeled the Y-intercept as a random variable

with river reach as the subject and used an unstruc-

tured covariance structure. We used identical

repeated-measures models for analyzing adult sport

fish, forage fish, and juvenile sport fish. Additionally,

we used a simplified model to analyze trends of

juvenile sport fish that included only silver carp

abundance, temperature, and the interaction of these

factors as a follow-up to the main repeated-measures

analysis.

Results

Covariate trends

Both the frequency and duration of flooding show a

clear dichotomy between the control and invaded

reaches. The number of days the river was in flood

stage never exceeded 50 days in the control reaches

(Fig. 3a), whereas floods extending C 50 days were

common in the invaded reaches (Fig. 3b). In Pool 26

and the Open River Reach, flooding exceeded

100 days in 2008, 2010, and 2011 (Fig. 3b). As with

flood duration, water temperature in the main channel

also varied substantially between control and invaded

reaches (Fig. 4a). Additionally, positive linear trends

were evident at all six reaches and all reaches were

warming at a similar rate. Greater concentrations of

suspended solids are found in the invaded reaches than

in the control reaches (Fig. 4b). Negative linear trends

were evident in Pools 4 and 8, but no trends through

time were evident in the other four reaches (Fig. 4b).

Repeated-measures mixed model results

We found a negative empirical relationship between

silver carp and adult sport fish abundance that varied

with year. Convergence criteria were met for the

repeated-measures mixed model for adult sport fish

abundance and the null model likelihood ratio test was

significant (df = 1, v2 = 28.40, p\ 0.001), indicating

that the unstructured covariance matrix is preferable to

the null model matrix (ordinary least squares). Year

(F1,105 = 8.95, p = 0.003), silver carp (F1,105 = 5.14,

p = 0.025) and the interaction between year and silver

carp (F1,105 = 5.17, p = 0.025) were all significant

(Fig. 5a). Effect size was greatest for silver carp
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(Cohen’s f2 = 0.134), followed by the interaction of

year and silver carp (Cohen’s f2 = 0.131) and year

(Cohen’s f2 = 0.07). None of the three covariates were

significant (F1,105 B 0.34, p C 0.559).

Our repeated-measures mixed model provides an

estimate of when silver carp began adversely affecting

adult sport fish. The model and coefficients derived

from the analysis are:

ASF ¼ 0:0095ð ÞYear þ 178:3800ð ÞSC
þ �0:0890ð ÞYear � SC þ 0:1313ð ÞLogSS
þ 0:0004ð ÞFDþ �0:0135ð ÞT

where ASF = Adult sport fish abundance, SC = Sil-

ver carp abundance, SS = Suspended solids, T =

Water temperature.

Dividing the coefficient for silver carp (178.3800)

by the coefficient for the interaction of year and silver

carp (- 0.0890) yields - 2004.26 suggesting that

silver carp began to cause reductions in the CPUE of

adult sport fish shortly after 2004.

We found no relationship between abundances of

silver carp and forage fish, and an interactive effect of

water temperature and silver carp on juvenile sport

fish. Convergence criteria was met for the repeated-

measures mixed model for forage fish and the null

model likelihood ratio test was significant (df = 1,

v2 = 56.95, p\ 0.001), but none of the effects in the

model were significant (F1,105 B 3.60, p C 0.061)

(Fig. 5b). Convergence criteria were met and the null

model likelihood ratio test was significant for the

repeated-measures mixed model for juvenile sport fish

(df = 1, v2 = 56.95, p\ 0.001), with temperature the
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Fig. 3 Trends for the number of days above flood stage for

a the three control reaches (Pool 4, 8, and 13) and b the three

invaded reaches (Pool 26, Open River Reach, La Grange

Reach), sampled by the Long Term Resource Monitoring

element of the USACE Upper Mississippi River Restoration

Program from 1994 to 2013
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in the three control reaches (Pool 4, 8, and 13), and three invaded
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2013. Lines indicate significant (p B 0.05) linear regressions of

water temperature or suspended solids with year
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only significant effect (F1,105 = 6.58, p = 0.012)

(Fig. 6a). Using the simplified model with only silver

carp, temperature, and their interaction, convergence

criteria were met and the null model likelihood ratio

test was significant (df = 1, v2 = 108.56, p\ 0.001),

and all effects within the model were significant

(F1,105 C 4.30, p B 0.040). A significant positive

relationship between temperature and CPUE of juve-

nile sport fish occurred in control reaches but not in the

invaded reaches (Fig. 6b).

Discussion

We found empirical evidence of a negative influence

of silver carp on the abundance of sport fish in the

UMRS. Temporal trends in the abundance of adult

sport fish in the control reaches were generally

positive, whereas these trends were generally negative

in the invaded reaches. None of the three covariates,

flood days, water temperature, and suspended solids,

had significant effects on the abundance of adult sport

fish, even though these variables differed substantially

between control and invaded reaches. Although water
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Fig. 6 Trends in abundance of a juvenile sport fish through
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temperature for control (blue circle) and impacted (red circle)
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element of the USACE Upper Mississippi River Restoration

Program from 1994 to 2013. Lines indicate a significant

(p B 0.05) linear regression between juvenile sport fish and

water temperature
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temperature was substantially cooler in the control

reaches relative to the invaded reaches, all study areas

were warming at a similar rate over the 20 years

examined and trends in sport fish populations were

opposite in invaded and control reaches. Insignificant

environmental covariates in our analysis of adult sport

fish is not evidence that these factors are unimportant

to the population dynamics of sport fish. Our analysis

only examined these factors as covariates (i.e., no

interactions are included due to limited degrees of

freedom). We believe our analysis of 20 years of

standardized monitoring data, including multiple

control and invaded reaches, and 6 years of data

preceding the establishment of silver carp, is one of the

strongest empirical assessments of the effects of an

invasive species conducted for a large and spatially

complex ecosystem. Our results indicate that the

association between the abundance of silver carp and

adult sport fish was robust despite the inclusion of the

three environmental covariates that differed substan-

tially between control and invaded reaches.

Silver carp likely adversely affect adult sport fish by

reducing the abundance of zooplankton both through

direct consumption of zooplankton and by competing

with zooplankton for phytoplankton. Although several

of the sport fish included in our index consume

zooplankton as adults (e.g., bluegill, yellow perch,

white and black crappie), none of these species are

exclusively or predominantly zooplanktivorous as

adults. Reductions in zooplankton abundance could

have a negative influence on the abundance of forage

fish, but we found no evidence of such a relationship.

A more likely explanation may be that the observed

reductions in adult sport fishes result from competition

for zooplankton during early life stages of sport fishes.

Our suggestion that silver carp may compete with

larval and juvenile sport fish for zooplankton contrasts

with early descriptions of silver carp as predominantly

consumers of phytoplankton rather than zooplankton

(see review in Kolar et al. 2007). This conclusion is

based on relatively early studies focused on the

evaluating the potential to use silver carp to control

algal blooms. Most of these studies examined diet of

young-of-the-year or age-1 silver carp stocked in

small-artificial ponds fertilized to produce algae

blooms (Cremer and Smitherman 1980; Ghosh et al.

1973; Spataru 1977; Spataru et al. 1983). These

studies may demonstrate that juvenile silver carp can

feed primarily on phytoplankton when reared in ponds

with abundant blooms of phytoplankton, but they may

not accurately describe silver carp diet at other life

stages or in other ecological contexts. More recent diet

and stable isotope studies demonstrate that silver carp

diet is plastic and varies with environmental condi-

tions (Coulter et al. 2018; Yao et al. 2016), with silver

carp consuming phytoplankton (Calkins et al. 2012;

Zhou et al. 2009), zooplankton (Domaizon et al. 2000;

Sampson et al. 2009; Sparatu and Gophen 1985; Xu

and Xie 2004; Zhou et al. 2009), detritus (Asanka et al.

2015), and even benthic resources (Lubcker et al.

2016), depending on their ontogenetic state (i.e.,

larvae, juvenile, adult) (Domaizon et al. 2000), trophic

state/productivity of the aquatic system (Chen et al.

2011), presence and abundance of competitors (Wang

et al. 2018), and season (Spataru and Gophen 1985).

Although there is substantial variation and flexibil-

ity in the diet of silver carp, studies have consistently

demonstrated that silver carp reduce the abundance of

zooplankton and shift the community composition of

zooplankton. Research conducted in artificial ponds

(Burke et al. 1986; Milstein et al. 1985) natural lakes

(Lu et al. 2002; Wu et al. 1997), reservoirs (Radke and

Kahl 2002; Zhou et al. 2011), and rivers (Sass et al.

2014), all demonstrate that silver carp can substan-

tially reduce the abundance of crustacean zooplankton

(e.g., cladocerans and copepods). Silver carp also shift

the composition of crustacean zooplankton to smaller-

sized taxa (Wu et al. 1997). Because most native sport

fish feed heavily on crustacean zooplankton during

their larval and juvenile stages (Chick and Van Den

Avyle 1999; Sampson et al. 2009; Sass et al. 2014),

reductions in the abundance of these important food

resources by silver carp is a viable hypothesis for the

negative empirical relationship between sport fish and

silver carp found in this study. Sass et al. (2014)

demonstrated that zooplankton abundance in the

Illinois River (including the La Grange Reach)

declined and the composition shifted to smaller taxa

after bigheaded carps became established, further

supporting our hypothesis. The effects of silver carp

on zooplankton may be a combination of both

predation and competition for phytoplankton, but their

can be little doubt that their direct predation on

zooplankton contributes to this decline.

Silver carp appear to be constraining the recruit-

ment of juvenile sport fish, but the relationship

interacts with water temperature. Water temperature

was the only significant variable in the full mixed-
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model with an overall positive relationship between

temperature and juvenile sport fish. Using a simplified

mixed model, we found significant interaction

between the effects of silver carp and water temper-

ature on juvenile sport fish. The overall positive

relationship between juvenile sport fish and temper-

ature was driven by the three control reaches, whereas

there was no relationship between temperature and

juvenile sport fish in the three reaches invaded by

silver carp. Recruitment success of many fish species

is positively related to water temperature during the

growing season (Chick et al. 2013; Houde 1987). The

positive relationship between water temperature and

the abundance of juvenile sport fish in control, but not

in invaded, reaches suggests silver carp may be

restricting recruitment of sport fish. This pattern is

consistent with the Biotic–Abiotic Constraining

Hypothesis, whereby certain biotic interactions can

constrain recruitment of fishes even when abiotic

conditions are favorable (Quist et al. 2003; Quist and

Hubert 2005). Under this model, silver carp is a

plausible biotic factor that could constrain recruitment

of sport fish in reaches invaded by silver carp.

Moreover, this mechanism might operate similarly

for sport fish in the Great Lakes should silver carp ever

become established there.

Our analysis of the effects of invasive silver carp on

native sport fish using multi-species indices has at

least three advantages. First, sport fish are economi-

cally important natural resources (Southwick Associ-

ates 2012) as well as important predators of fish and

invertebrates in freshwater ecosystems. By one widely

accepted definition (Clinton 1999), an invasive species

is a non-native species that does ecological and/or

economic harm, or harm to human health. Our finding

that adult sport fish are declining in reaches invaded by

silver carp, and that this decline is empirically related

to the abundance of silver carp, suggests both ecolog-

ical and economic damage from the invasion of silver

carp. Finally, multispecies indices have been sug-

gested to be more sensitive to environmental impacts,

especially where the population dynamics of individ-

ual species typically show substantial variation (Niemi

and McDonald 2004; Noss 1990). For example,

gizzard shad, which were the dominant forage species

in the invaded reaches (e.g., 62.9–78/9% of the forage

fish index; Table S5) are well known to have large

inter-annual variation in recruitment and overall

population levels (Bremigan and Stein 1999, 2001;

Wuellner et al. 2008). Even though gizzard shad can

have substantial dietary overlap with silver carp

(Sampson et al. 2009; Wang et al. 2018), this large

inter-annual variation in population size and recruit-

ment may have contributed to the lack of any

relationship between the multispecies index of forage

fish and the abundance of silver carp. Additionally,

since adult sport fish are declining, this may be

releasing forage fish from predation.

Our study provides empirical evidence of an

adverse relationship between silver carp and econom-

ically valuable sport fish in the UMRS. Great concern

has been raised over the potential for bigheaded carps

to invade the Great Lakes (Jerde et al. 2011, 2013;

Kolar and Lodge 2002), including the appointment of

an Asian Carp Director for the Council of Environ-

mental Quality to oversee the United States Govern-

ment’s efforts to prevent the spread of bigheaded carps

to new areas. These concerns are valid, but the effects

of bigheaded carp on economically valuable outdoor

recreational activities on the UMRS is less frequently

discussed. Silver carp not only threaten sport fishing,

but also are detrimental to recreational activities

involving boating on UMRS waters due to their

propensity to jump and impact boaters. Outdoor

recreation on the UMRS was estimated to have an

economic value of $1.2 billion annually in 1990

(equivalent to $2.2 billion in 2018 dollars), which is

not a trivial resource for the U.S. economy (Carlson

et al. 1995). Our study suggests that in addition to

focusing on the Great Lakes, efforts to prevent the

spread of silver carp to new areas throughout the

United States and to reduce their abundance in areas

where they have already become established are

worthy of federal consideration and investment to

minimize ecological and economic impacts.
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